C(3)-AZIDO CEPHEM II

Douglas O. Spry*, Anita R. Bhala, Wayne A. Spitzer, Noel D. Jones, and John K. Swartzendruber

> The Lilly Research Laboratories Eli Lilly and Company Indianapolis, Indiana 46285

Abstract: The major product from the thermolysis and photolysis of C(3)-azido cephem 2 is the ring expanded 1,4,6-thiadiazepine azetidinone.

Azides are known to undergo thermal and photochemical decomposition to give nitrenes which can then rearrange to give diverse products.

We recently investigated the reaction of the C(3)-azido cephem 1 with nucleophiles and dipolarophiles to give a variety of C(3)-substituted amino cephem products.¹ In this communication we describe the thermolysis and photolysis of 2.

It is known that the decomposition temperature of azides decreases in the order of alkyl and aryl azides $(150-200^{\circ})$ > azidoformates and sulfonyl azides $(100-150^{\circ})$ > acyl azides $(25-80^{\circ})$.² We considered the C(3)-azido cephem 1 to be a vinylogous acyl azide thereby presumably decreasing the $N-N_2$ double bond character and making this azide thermally less stable than a vinyl or alkyl azide. Indeed, the methanolysis of 2A in 1:1 methanol/acetone occurred at 65° within 1 hr. Although silica tlc showed four products, only three were isolated following silica chromatography and all three contained the *B*-lactam as judged by ir $(1773-1778 \text{ cm}^{-1})$. Isomers I³, II⁴, and III⁵, listed in the order of elution, were all isomeric by mass spec, with a molecular weight corresponding to addition of methanol and loss of nitrogen.

The UV spectrum of isomer I showed the absence of the β -amino- α - β -unsaturated ester⁶ while the nmr spectrum showed a low field proton (6.1 δ), the AB of the C(2)methylene at 3.10, 3.50 & (J=14 Hz) and the presence of the methoxyl at 3.65 s. The β -lactam protons and the PNB protons appeared together as a multiplet. However, MCPBA oxidation of 3A gave a crystalline sulfoxide^{\prime} (191–192°D) whose nmr spectrum showed clean separation of the PNB protons from the β -lactam protons. From this data we concluded that isomer I had structure 3A, i.e., a ring expanded derivative. Indeed, the ethanolysis of 2A gave a crystalline (154-155°)

derivative (33%) which was appropriate for X-ray analysis and its structure was determined to be 6^8 , i.e., the C(3)-ethoxy derivative of isomer I.

Atom numbering scheme and solid-state conformation

Methanolysis of other esters of 2 also gave crystalline derivatives of isomer I, for example, the allyl ester (125-127°) and the benzhydryl ester (186-187°).

Isomer II could not be obtained crystalline and MCPBA oxidation led to degradation. Physical data suggests 4 as a possible structure.

Isomer III was identified from physical data⁵ and by X-ray analysis of its benzhydryl ester derivative $\underline{5B}^9$ to be $\underline{5}$.

Other nucleophiles have been used with 2 (R^2 =PNB) in addition to methanol and ethanol. Phenol gave a crystalline derivative of isomer I, $\underline{7}^{10}$ (165-167°), while N-methylaniline gave the corresponding ring expanded derivative $\underline{8}^{11}$ in 21% yield, and thiophenol gave 47% C(3)amino cephem 9^{12} (211-213°) and ca. 5% 10. There is ample precedence in the literature for the reduction of azides by mercaptans.

9%

10%

3

20%

25%

The sodium salts of isomers I, II and III and compound $\underline{8}$ showed poor microbiological activity relative to cephalothin.

In a preliminary study, photolysis ¹⁴ of <u>2</u> (R^2 =PNB, CHPh₂, Me) gave isomer I (27%, 17%, 6%), none of isomer III and only a trace of isomer II (where R^2 =Me).

Formation of the two known structures, isomers I and III, from the methanolysis of the C(3)-azido cephem can be explained by the formation of a nitrene. Isomer I, we feel, is derived from the azirine <u>11</u>, which could be formed by either a synchronous mechanism or by formation of a discrete nitrene. Methanolysis of the azirine followed by rearrangement would then give isomer I. Formation of isomer III can be explained by C(2)-H bond insertion of the singlet nitrene followed by methanolysis. Products resulting from C-H bond insertion are normally taken as evidence for the existence of a discrete nitrene intermediate.¹⁵

References and Notes

- 1. C(3)-Azido Cephem. I. D. O. Spry and A. R. Bhala, submitted to <u>J. Org. Chem</u>. (1984).
- 2. G. L'abbe, Chem. Rev., 69, 345 (1969).
- 3. Isomer I, <u>3A</u>: m/e 504; ir (CHCl₃) 1773 cm⁻¹; UV (ETOH) 237 nm, ϵ 12,250, 268 nm, ϵ 10,200; nmr (CDCl₃) δ 3.10, 3.50 (AB, J=14 Hz, 2, C(2) protons), 3.65 (s, 3, OMe), 3.83 (s, 2, thiophene methylene), 5.38 (m, 4, H₇, H₈, PNB), 6.05 (s, 1, H₅).

- 4. Isomer II, <u>4A</u>: m/e 504; ir $(CHCl_3)$ 1775 cm⁻¹; UV (ETOH) 235 nm, ε 13,500, 277 nm, ε 13,000: nmr $(CDCl_3)$ 3.63 (s,3, OMe), 3.83 (s, 2, thiophene methylene), 4.33, 4.55 (AB, J=14 Hz, 2, C(2) protons), 5.1–5.6 (m, H₅, H₇, H₈, PNB).
- 5. Isomer III, <u>5A</u>: white crystals from $CH_2Cl_2/hexanes, m.p. 236°D; m/e 504; ir (CHCl_3) 1778 cm⁻¹; UV (ETOH) 235 nm, <math>\varepsilon$ 14,800, 291–293 nm, 17,000; nmr (DMSOd₆) δ 3.33 (s, 3, OMe), 3.92 (s, 2, thiophene methylene), 5.1 (s, 1, C(2)H), 5.14–5.3 (m, 4, H₆, H₇, PNB).
- 6. UV of 9: (ETOH) 236 nm, ε 14,500- thiophene, 286 nm, ε 19,000, see ref. 12.
- Sulfoxide of <u>3A</u>: white needles from CH₂Cl₂/hexanes, m.p. 191-192°D; m/e 520; ir (KBr) 1778 cm⁻¹; UV (ETOH) 235 nm, ε 12,400, 262 nm, ε 9,900; nmr (DMSOd₆) & 3.60 (s, 3, OMe), 3.83 (s, 2, thiophene methylene), 4.27 (s, 2, C(2) protons, 5.40 (s, 2, PNB), 5.42 (d, J=4 Hz, 1, H₂), 5.70 (d, d, J=4, 8 Hz, 1, H₂), 6.27 (s, 1, H₅).
- 8. <u>6</u>: white crystals from MeC(0)Et/hexanes, m.p. 154-155°); m/e 518, 338; ir (CHCl₃) 1775 cm⁻¹; UV (ETOH) 232 nm, ϵ 11,510, 266 nm, ϵ 8,200; nmr (CDCl₃/DMSOd₆) δ 1.23 (t, J=8 Hz, 3, OEt), 3.33 (s, 2, C(2) protons), 3.80 (s, 2, thiophene methylene), 4.1 (m, OEt), 5.42(m, 4, PNB, H₇, H₈), 6.13 (s, 1, H₅); X-ray data: P2₁, 2 molecules/ cell, a = 13.123 ± 0.003 A, b = 5.291 ± 0.001 A, c = 17.315 ± 0.006 A, β = 100.95 ± 0.02, V = 1180.5 ± 0.5 A³, 1938 reflections (CuK_a) with no absorption correction, final R = 0.104. Supplementary data has been submitted for deposition at Cambridge Crystallographic Data Center.
- 9. X-ray data on <u>5B</u>: $P2_12_12_1 = 4$ molecules/cell, $a = 10.912 \pm 0.002$ A, $b = 8.691 \pm 0.001$ A, $c = 27.996 \pm 0.004$ A, $V = 2655.1 \pm 0.8$ A³, 1627 reflections (CuK_a) with no absorption corrections, final R = 0.064. Supplementary data has been submitted for deposition at Cambridge Crystallographic Data Center.
- 10. <u>7</u>: white needles from $CH_2Cl_2/hexanes, m.p. 165-167°; m/e 566; ir (KBr) 1779 cm⁻¹; UV (ETOH)-not completely sol., 235 nm, <math>\varepsilon$ 7,500; nmr (DMSOd₆) δ 3.80 (s, thiophene methylene), 5.37 (m, H₇, H₈, PNB), 6.08 (s, 1, H₅).
- 11. <u>8</u>: m/e 579; ir (KBr) 1771 cm⁻¹; nmr (DMSOd₆) & 3.20 (s, 3, Me), 3.34 (s, 2, C(2) protons); 3.75 (s, 2, thiophene methylene), 5.3–5.5 (m, 4, H₇, H₈, PNB), 6.16 (s, 1, H₅), 9.14 (d, J=8 Hz, 1, NH).
- 12. <u>9</u>: from CH₂Cl₂/acetone/hexanes, m.p. 211-213°; m/e 474; ir (KBr) 1762 cm⁻¹; UV (ETOH) 236 nm, ε 14,500-thiophene, 286 nm, ε 19,000-PNB + conj. amino; nmr (DMSOd₆ δ 3.08, 3.42 (AB, J=11 Hz, 2, C(2) protons), 3.76 (s, 2, thiophene methylene), 5.20 (m, 4, H₆, H₇, PNB), 7.6 (Bs, NH₂).
- 13. (a) H. Bayley, D. N. Standring, and J. R. Knowles, <u>Tetrahedron Letters</u>, 3633 (1978),
 (b) T. Adachi, Y. Yamada, I. Inoue, and M. Saneyoshi, <u>Synthesis</u>, 45 (1977), (c) J. A. Edwards, A. Guzman, R. Johnson, P. J. Beeby, and J. H. Fried, <u>Tetrahedron Letters</u>, 2031 (1974).
- 14. Conditions for the photolysis of <u>2</u> (R²=PNB): 0.501 g (1.0 mm) in 25 ml CH₂Cl₂ plus 1700 ml MeOH photolyzed under Ar 7 min. using a 450 W. Hanovia lamp with a pyrex immersion apparatus.
- W. Lwowski, Ed., "Nitrenes", Wiley-Interscience, New York, N.Y., (1970), p. 4-5. (Received in USA 15 December 1983)